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This paper deals with the numerical solution of the shallow water equations in
channels with irregular geometry but with a locally rectangular cross section. This
type of channel leads to the presence of source terms involving the gradient of the
depth and the breadth of the channel. Extensions offseheme of van Leer and
Roe are proposed which generate natural upwind discretizations of the source terms.
The consistency of the proposed schemes is analyzed. A stationary solution that
emphasizes the source terms considered is obtained which is used to test the proposed
extensions in terms of a “conservation” property. A low-order asymptotic unsteady
analytical solution for a small Froude number is also obtained. The numerical results
presented confirm the improved properties of the proposed schemes for a transient
test problem. (© 1999 Academic Press
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with irregular geometry.

1. INTRODUCTION

Numerical solutions of hydrodynamic problems offer the possibility of predicting t
behaviour of the relevant variables in practical situations. In particular, the one-dimens
shallow water equations can be solved in order to determine the flow variables in char

Inthese equations, the channel or river geometry, characterized by the bed depth anc
section functions, has a special relevance. For channels with variable bed and rectal
cross section there are source terms involving the bed slope, as well as the breadth fu
and its derivative; moreover, consideration of bottom friction leads to an additional so
term.

The hyperbolic system of homogeneous shallow water equations can be written in
servative form and the presence of source terms leads to the mathematical framew:
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a numerical solution of hyperbolic systems of conservation laws with source terms (
LeVeque [13], Godlewski and Raviart [8], and Toro [20]).

Although upwind schemes were initially developed for the Euler equations, inrecentye
the number of papers devoted to the numerical solution of the shallow water equations \
Riemann solvers has increased (see Glaister [6], Alcrudo andaGsByarro [1]). The
discretization of the source terms has been studied by a large number of authors (see
[19, 7,17, 14, 10)).

In previous papers (Bemdlez and Vdzquez [3], for the one-dimensional case, anc
Bermidez, Dervieux, Desideri, andaZquez [2], in the two-dimensional case) the im-
portance of upwinding the source term involving the bed slope in channels with const
breadth has been proved. In this paper, in order to motivate the advantage of upwinding
more general source terms, we start by showing the unsatisfactory results obtained v
using centred discretizations in a stationary problem. These results are compared witl
corresponding exact stationary solution also obtained in the present paper. This solution
be referenced when we study the conservation of the schemes. An upwind discretize
for these source terms is also proposed. In some sense, the source terms are upwinde
similar way to the numerical flux, although there are different expressions for each mett
We generalize for nonuniform meshes tQeschemes of van Leer and Roe with tools intro-
duced in Bermdez and \ézquez [3] to nonhomogeneous problems. This generalization
very important in order to use the adaptive mesh techniques to reduce the number of n
and to improve the accuracy.

The consistency and conservation of the proposed schemes for nonuniform meshe
analyzed from the theoretical point of view. Let us notice that the two upwind scher
considered here are conservative forhomogeneous problems. Nevertheless, the conser
of the extended schemes must be proved in the presence of source terms.

Asin[3], the introduction of the conservation property is connected with steady solutio
More particularly, a numerical scheme applied to the shallow water equations is tern
conservative if it approximates, exactly or with order greater than one, a stationary solu
when including the different source terms studied. It is proved that these extensions ve
this property, and the new steady solution is present this study.

In addition to the theoretical analysis of the properties of the proposed schemes, nume
results are shown. In order to illustrate the improved performance of the new extensions
results are compared not only with the mentioned stationary solution associated with
conservation property but also with an “asymptotic” unsteady solution that is also obtait
in this paper.

It is worth noting at this point that the analytical solutions presented in the literature ci
respond to either constant depth and variable breadth or constant breadth and variable
(see MacDonald [16]). An important contribution of this work comes from the possibilit
of analyzing the joint behaviour of both source terms by means of the asymptotic solut
obtained here, which includes variable depth and breadth and also bottom friction effe
In order to deduce this solution it is convenient to write the equations in dimensionless fc
so that the solution is obtained by means of asymptotic expansions in terms of the Frc
number. The solution is valid for small values of this parameter and when the domait
“small.”

The improved properties of the proposed schemes are also shown in problems prese
in the literature: the flow over a bump in critical situations (see [9]) and two test pro
lems described by Ga@Navarroet al. [4]; a steady flow (with a hydraulic jump) and a
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surge propagation (a transitory motion with supercritical situations), both in a convergi
diverging channel with constant depth.

The shallow water equations are stated in Section 2. The numerical discretizatic
presented in Section 3, where the general class of upwind methods for nonhomoger
conservation laws introduced in Bendez and \dzquez [3] is generalized to nonuniform
meshes and applied to the source terms. For the shallow water equations these schern
also compared with a “conservation property related to a stationary solution” in Sectio
Finally, in Section 5, numerical results are shown and compared with those obtained
centred discretizations of the source terms and with the “analytical” solution for the ti
propagation test and also for the mentioned classical problems. Finally, the conclusior
presented.

2. SHALLOW WATER EQUATIONS FOR THE CHANNELS
WITH RECTANGULAR CROSS SECTION

The one-dimensional flow in an open channel of variable breadth and depth, but w
locally rectangular cross section, may be described by the Saint-Venant equations v
are written in conservative form as

AW aF X
W(X’ )+ a—X(W(x, t)) = G(x, W(x, 1)), D)
~ S S i~ Q
=(2)=(0) 7= (3)
- - 0
G ,W - , 2 3
(x, W) —gS(I — H(x) — gg\%y 3)
(see Fig. 1).
W
< B(x)
/\/\ h(x,t)
h(x,t)
é(x)
R, H(x) x
/
2Z(x) / /
Q

FIG. 1. Shallow domain.
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The two components of the conservative varialerepresent the cross-section area
S= S(x, t) and the massflo® = Q(x, t) = Sy, andu andh denote the average horizontal
velocity and the total height above the bottom of the channel, at positiand timet,
respectively. The hydraulic radius is denoted®py M is the Manning coefficien = Z(x)
is the bottom function, anti (x) the depth of the same point but from a fixed referenc
level R = Z(x) + H(x). 2=][0, L] denotes the projection of the domain occupied by th
fluid onto theX axis.

We consider a locally rectangular channel, so that

S(x, t) = B(x)h(x, t), 4)

whereB(x) is the breadth of the channel.

Replacing the expressidof (4) in Eqg. (1) we obtain a new form of the equations with
new unknowns. The components of the new unknown, calleate the height of the fluid
andg = hu. Let us observe that these are the same as in the one-dimensional shallow w
equations for channels with constant breadth (i.e., wBed = 1 ¥x € Q).

dw 9F 3
S 00D+ o, 1) = kzzjl Gy (X, w(x, 1)), (5)

where

w—<h> Fawy={ , Gy = 0 (6)
—\a)’ A\ E g )’ YT ghro

—q B(;()
GZ(X, w) = ( q? BB(/()i) ) ’ G3(X’ UJ) = (_MZ |ﬂo|(Rh)—4/3> : (7)
-T 9q|x

B(x)

The reason why three source terms have been distinguished is to allow them to be
cretized in separate ways. The source t&mincludes the bed slop&;, contains the
breadth variation, and finallgg; models the bottom friction.

The boundary conditions will be introduced as

h(0,t) = ¢(t) + H(0) ®)
aL,t) =y, )

whereg(t) andy (t) will be given functions.

3. NUMERICAL DISCRETIZATION

An explicit time discretization is used, together with a finite volume method with uj
winding to discretize in space. Starting from an approximatéhof the exact solution
w(-, ty) and using the explicit Euler scheme, we obtain

W) — W 9F S .
X + 5 W) —;Gux,w ). (10)
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FIG. 2. CellC;.

The spatial domain is discretized by taking an arbitrary nibshLet{x; :i € Z} be the
nodes oAy, WhereAx denotes the norm

AX = sup [X — X_q] (11)

Xi € Cax

of Cax. The cellC; is defined as (see Fig. 2)

Xi — Xi—1 Xit1 — X
Ci = (Xi—1/2, Xi+1/2) = <Xi e g '),

2 " 2
so that its length is given b = (X1 — X _1)/2.
The approximate solutioW" to w att, is considered as a piecewise constant functic
given by
W"(x) = W" forxeC;.

To obtain the spatial approximation of (1), we integrate (10) over thesgelhis leads
to the explicit scheme

Wn+1_Wn EnN 12— 12
% s ZGk., (12)

whereF} 12 andGy; denote approximations &f(W" (X +1/2)) and(1/A) fci Gi(x, WM dx,
respectively.

3.1. The Q-Schemes of Roe and van Leer

Three-point upwind schemes can be obtained by repldging, by values of a numerical
flux function,¢. More precisely,

Flie=¢(WLy, W), Flyp =0 (WL W) (13)

In particular, theQ-schemes are a family of three point upwind schemes correspondin
numerical fluxes of the form

FV)+FW) 1

¢(V. W) = 5 51 QYV. W)I(W = V), 14)
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whereQ is a matrix characteristic of ead@-scheme having a continuous dependence o
the two statey andW. In this work we use th€-schemes of van Leer and Roe:

e The Q-scheme of van Leer [12] corresponds to a choic€afqual to the Jacobian
matrix A of the flux evaluated at the arithmetic mean valu&cdndW:

QV, W) =A(V+2W). (15)

e The Roe scheme is based on a linearization of the flux. In the@#&sa diagonalizable
matrix which satisfies the property:

F(W)—-FV)=QN,W)(W—-YV). (16)

There are different ways of choosing a mat@<sat|sfy|ng (16) Roe [18] proposed to
defineQ as the Jacobian matrid evaluated at some sta® = W(V, W) known as the
Roe averagef V andW. In [6] Glaister gives\ for the shallow water equations.

The scheme is given by (12), (13), and (14).

3.2. A New Stationary Solution: Analysis of Centred Discretizations of the Source Tern

As already mentioned, if the geometry changes along the channebthamd G, do not
vanish. Moreover, if we include bed friction we also have the source &ym

Consider first centred discretizations of the source terms. In previous papers, [3,
we have proved that centred discretizations of the source @rntombined with flux-
difference techniques for the flux term (14), are responsible for spurious numerical wa
when the time discretization step is not small enough. This analysis is related to the ab
of a numerical scheme to approximate, exactly or with order greater than one, the statio
solution of “water at restth=H, g=0).

In the present work a similar analysis is performed. However, the previously mentior
stationary solution (water at rest) involvggs= 0 so thatG, andG3 vanish and no conclusions
can be drawn. Instead, we propose a hew stationary solution in which the sourc&term:
andGg; play arole in order to derive information about their discretization. For this reas
u is taken as the inverse function Bfandh is constant, giving

h(x,t) = h (17)

hk

whereh andk are constants.

Consider a channel whose breadth function is known and where bottom friction is tal
into account. The question is how to determine the depth function so that (17)—(18
a solution of the shallow water equations. After some algebraic manipulation the de
functionH is found to be given by

_ k? 1 1 2 -4/3
H(X) = H(XI) + 29(82()() - BZ(X|)> + M Rh k|k| y BZ(S) ds. (19)
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TABLE |
Values of Breadth Function at the Pointsx

X 0 50 100 150 200 250 300 350 400 425 435 450 470 475 50
Bx)y 40 40 30 30 20 30 30 25 25 30 35 35 40 40 40

X 505 530 550 565 575 600 650 700 750 800 820 900 950 1000 15
B(x) 45 45 50 45 40 40 30 40 40 5 40 35 25 40 40

As atest problem a subcritical case is chosen. Then the eigenvalues of the Jacobian
of the flux must satisfy

Amm=%+¢®>o (20)
Ao(w) = % — \/@ <0 (21)

Taking the exact solution (17), (18) into account, the relations (20) and (21) imply th

< minB(x). (22)

‘ k
Vanl %

For the breadth function we take an irregular function in order to study the behaviou
the schemes near points of discontinuity. In particular we select the same breadth fun
considered by thevorking group on dam break modellifig] to test the behaviour of the
schemes for the source terms (see Fig. 3 and Table I). For this function the minimum v
in (22) is 5 m. Thus two possible valuestandk are

h=1m k=10 (23)

In order to perform an independent analysis of the source t€&nasdGs, we begin by
assuming thaM = 0 so as to be able to consider oi@y.

[ BC x 2

24. 7

T T T - T T T T T T T T
. D Sa. 2 1000. @ 1590. @

FIG. 3. Breadth of the channel.
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Itis important to notice that in this case tematrix is the same for both the Roe and van
Leer Q-schemes. Therefore the numerical results we need to consider only one of th
The upwind discretization proposed in [3] is used @&y for the Q-scheme of van Leer,
and a centred scheme is applied to the source @gnin order to examine this choice the
discretizations are detailed. It is considered that at timd,, the approximated solution
and the exact solution are equal:

— hk
WM=h o=— Wi, (24)
B
and
k/1 1 .
B(x) = B, Hi=H1+2g(Bi2—Blz) vi. (25)

Then the flux and source term discretizations to compute the solution at tihg 1 are

(¢(an W) ; ¢ (W1, W) ) 1

kﬁ(l 1)_k2\/§ﬁ[1 2 1} (26)

= — — + =
2A \ B +1 Bi_1 4g A Bi2+1 Bi2 Biz, 1
<¢>(vvi“, W) — ¢ (W2y W) >
A 5
k2h / 1 1 kh 1 2 1
= —_— —_— —_ ——1/ h _—— + —_—
2A (Bi2+l Bi21> 2a V9 {Bwl Bi Bi—l]

k3oh[/1 1 1 1 1 1\/1 1
“aoa & e (e w) (e ra) @ a)| @
kz\/aﬁ{ 1 2 1 ] 28)

(Gi1=— - =3
I 49A |BY, B B,

o 21 (G ) -

4n |B2, B?,| 8gA [\B ' B./\B%, B?

(o) (e e @)
(Gi2)1 = g (%ﬂ - i) (30)
(Gi2)2 = g {%ﬂ - %] (31)

Figures 4 and 5 show the corresponding results obtained@fith=0.9, AXx =3 m, and
after 500 s, where the steady state is reached. The numerical results for thpStoow
diffusive effects (see Fig. 4). Analysis of this effect leads to the conclusion that it is due
the centred discretization used.
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. 52632
L 42105
. 31579
I R A : .......
1500.
[~ 1]

FIG. 4. Flux (q). Q-scheme of van Leer with centred discretizatiorsgf t = 500 (
-x- approximate solution).

exact solution;

The stationary problem for which (17)—(18) is a solutionMit= 0, is

M___qu
ax B(x)
(SP) (32)

9 q2 q2 B’ —

A first analysis of the numerical schemes would lead to a test if the two members of |
were discretized in an analogous way. Next, it will be proved that the difference betw

[ z2CxJ, hCx, t)+zCx3

1. 120
] = = et et
. 729
. 358
—-. 012 T T T f T T 7 T T T T T T T
7] 5303. 1909A. 19500.

FIG. 5. Profile (Z(x), h(x,t) + Z(x)). Q-scheme of van Leer with centred discretizationGy, t =500
exact solution;e- approximate solution).

(
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both discretizations are terms of order one in space. Taking the expressions (24)—(29)
account this difference can be written

WP W) (W W) B[ °
A ZGIk_ _ kh gh[ 1 2+ﬁ}+O(AX)2 :

Bi +1 B

(33)

Thus, to first order, the difference between (32) and (33) is the diffusive term arising fre
the upwinded flux discretization,

(Vi)

which, in this case, is equal to

B'(X) >
—AX[ +/gh .
( ghq BX) ),
In other words, the equivalent, or “modified,” equation corresponding to the second eq
tion of the stationary problem (32) and arising from upwinding the flux@pdiscretization
and from a centred discretization Gf is

2 (?\ _ @?BX | -, 9 0q
&(F) = ThBe T~ AX5<\/QT]5)' 59

It can also be shown that the diffusive effectjivanishes when a centred discretization
of Ax(\/g—hqx)x is introduced, which cancels the analogous term in (33). In that case,
error term inh is also cancelled. If this cancellation does not occur, the error introduced
h can be seen in Fig. 5.

Inrelation to the discretization @3, taking into account the expression for the depth (19)
we observe a term whose derivative is analogousioHence, since we have concluded
in previous papers the importance of upwindi@g, it seems reasonable to upwind this
source term also. In any case, if we compute the difference between a centred discretiz
of Gz and the upwind discretization of the analogous terr®inwve obtain, for a uniform
mesh,

g*M2R; “klk|

2 o B0,
4\/55 qXXX

AX (35)

which is a dispersive term.
The expression considered in this paper for the hydraulic radius is that proposed by
working group on dam break modelliig],

A BMXhx,t)
Ri=1p= B(x) h; (36)

that is, the perimeteP is only the breadth. Nevertheless the conclusions of this study a
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1. Q@

. As7

—-1. SO

FIG. 6. Profile (Z(x), h(x,t) + Z(x)). Q-scheme of van Leer with centred discretizationGf and G,
M=0.1( exact solution;e- approximate solution).

also valid for the expression

B(x)h(x, t)

R = B0+ 2hx. D)

(37)

Using the previous test case but now with friction, with the Manning coefficieatO/L,
we see in Fig. 7, not only the regularizing effect due to the centred discretizati{®s btit
also a new effect due to the dispersive term related to the centred discretizaBgr{sue
also Fig. 6). Also in this caseLF=0.9 andAx=3m.

. 52832
L4215
. 31579
. 21053 - t
1s50@.
[ x|

exact

FIG. 7. Flux (g). Q-scheme of van Leer with centred discretizatiorGafandGz, M = 0.1 (
solution; «- approximate solution).
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In order to avoid these bad effects, upwind discretizations for all source terms will
used. In the next section we will prove that the new scheme computes the stationary solt
exactly, or with order greater than one.

3.3. Upwind Discretizations of the Source Terms

We now describe in detail the definitions proposed aryiez-Cenati [22] to upwind
the source terms for general meshes:

e The integral ofGy over the cellC; is split in the sum of two integrals on the subcells
TiL andTig,

1 1
—/ Gy(x, WHdx = — [ Gr(x, W dx + Gy (X, W“)dx} , k=1,2,3,
A Je A Tic

Tir
(38)

whereTi. = (Xi_1/2, X)) andTir = (X, Xi+1/2) are subcells of the cdll;, as has been detailed
in Fig. 2.

e Continuous function&,, k =1, 2, 3, giving an average o, on the subcelld;_ and
Tir are defined. The@®,, k=1, 2, 3, also depend on the contiguous nodes. The discretiz:
tion of the source terms is then given by

% [Ar, Gi(Xi—1, i, W1, W) + Ar G (%, X1, W, W )], k=1,2,3, (39)
where Ar, = (X — Xi_1)/2 and A, = (Xi11 — X;)/2 denote the length of;. and Tig,
respectively.

o Finally, to obtain an upwind discretization of the source terms it only remains to defi
Yk andyrg, k=1, 2, 3. These functions will give upwind values of the source terms o
both sides of nodg;, on the subcell3; andT;g, respectively. In summary, we propose an
upwind definition of the source terms as

1
= ™ [Ar YLk (Xi—1, X, W, W) + Agedrre (X0 X, WYL W), k=1,2,3.
|

(40)
In Bermidez and Vazquez [3] the following source functions are proposed:
Yik(x, ¥, Vo W) = [1 4 1Q(V, W) QH(V, W)IGi(x, ¥, V, W) (41)
YRe(X, ¥ Vo W) = [ = 1Q(V, W) QH(V, W)]Gk(X, ¥, V, W). (42)
For the functions5y the following is proposed:
Gk(x,y,V,W)sz<X;y,V—£W), k=123 (43)

We have described the construction of the schemes and, knowing the form of the so
terms, it is only necessary to make precise the approximation to the derivative or to
integral of the functions which appear in the centred source t&mk =1, 2, 3. Even if
we know analytical expressions for these functions,for the sake of consistency we shall
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[ zCxJ. hCx, tJ)+zCx)

1. 190
. 729 _-
. 358 _-
- @12 -" 7 Sgamsmoy RS B ; 7 7 ; 7 7 ;
. S20. 12Q0. 15209.
L > ]
FIG.8. Profile(Z(x), h(x, t) + Z(x)). Extension of the Q-scheme of van L¢et 500,M =0 ( exact
solution; ©- approximate solution).
the approximations:
X H — H(x
H,( +y)% (y) = HX (a4)
2 y —X
X B(y) — B(x
B,( +y)% () — B(X) (45)
2 y—X
y o1 1 1 —X
/z—dsm( 7o+ o3 )(y ). (46)
x B2(s) B2(x) =~ B(y) 2

We now present the results obtained with these approximations for the test prot
presented at the beginning of this section: The CFL number is 0.Qanrd 3 m without
friction (M =0) in Figs. 8 and 9; and with frictiotM = 0.1) in Figs. 10 and 11. In either
of the two casésa considerable increase in accuracy can be observed, particularly for
case without frictionM = 0), where no difference between the exact and the approxim:
solution can be seen, and even iEMD.1, we can also observe the efficiency of the propose
extensions.

Later on in this paper, in the section devoted to the conservation property, we will re
back to the stationary solution (17)—(18) and give a more rigorous interpretation of
numerical results.

Next we study the consistency of the proposed extensions. In order to do this we ri
the definition of consistency relative to the discretizaton of the source terms introduce
Vazquez-Cenati [22] for nonuniform meshes.

1 As has already been mentioned, for these solutionQtheatrix is the same for the two schemes considerec
and so only the results corresponding to @escheme of van Leer are shown.
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| qgCx., tD
. 52832
42105 | i
. 31579 |/ i
14 ' ;oA
434 “ " el
i <
v/
N 2l®53 T T T T I‘."' T T T T I T T T T
7] S520. 12000. 150a.

FIG.9. Flux(q). Extension of the Q-scheme of van Léer500,M =0 (
imate solution).

exact solution;=- approx-

Consistency. As is well known, the numerical flug of an upwind scheme onsistent
with the continuous flux Esee, for instance, [8]) if the following equality holds:

d(W, W) = F(W) YW € RP. (47)

In the case of5 =0, this definition coincides with the classical notion of consistency; the
is, the discretization error goes to zero whx goes to zero.

1. QDD

167

—-. B67

—1. 500

FIG. 10. Profile (Z(x), h(x,t) + Z(x)). Extension of the Q-scheme of van Laet 500, M =0.1 (
exact solution;e- approximate solution).
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| qCx. t2
. 52632 T
i i
T ' i
. 4z2105 _|
.31s79 |/ : .
b ¥4 q.‘ ‘¢ -
. 21053 V4 , —
@ S 10020. 1502.

FIG. 11. Flux (g). Extension of the Q-scheme of van Leet 500, M =0.1 (
approximate solution).

exact solution; s-

If G =0 we introduce the following definition:

DerINITION 1. The discretization of the source terms given by (40) is said to be consis
if it satisfies

. 1
lim ™~ [Ar Yik(Xi—1, Xi, U, W) + Aq Yre(Xi, Xigi, W, V)| — Gi(xi, W) = 0
U,v->w !

Vi: k=1,23 (48)

In what follows, necessary conditions to obtain consistency in the sense of Definitic
are detailed.

Let us remark that the mesh can be nonuniform. In this case, to obtain consistency
necessary that the mesh satisfy the propergsymptotic local uniformity

im [Xi — Xiy1

—1 vi. (49)
Ax=0[X; — Xj_1]

Then it is easy to prove that, €4} is a family of meshes with property (49) and
and yr are continuous functions, the discretization of the source terms given by (4C
consistent with the source terms if and only if the numerical source functions satisfy
relation

YLk(X, X, W, W) + Prre(X, X, W, W)
2

It is obvious that the source terms defined previously satisfy the relations given in |

so that we have consistency of the schemes.

=G, W), k=1,23. (50)

4. AC-PROPERTY RELATIVE TO A STATIONARY SOLUTION

In previous papers [3, 2] devoted to the numerical solution of the shallow water equat
only the source term involving the bed slope is taken into account. A centred discretize



512 MARIA ELENA V AZQUEZ-CENDON

of this term gives rise to spurious waves. The analysis of this phenomenon brings abou
definition of a “conservation property” introduced by Bermez and \dzquez in [3]. This
definition characterizes the order with which a numerical scheme approximates a ste
solution representing water at rést= H, g = 0). In this solution the importance of the term
G; is noted. If the conservation property is not satisfied (exactly or approximately), th
the propagation of spurious waves in nonstationary problems is also detected. Morec
the idea of this property is to preserve what Greenberg and LeRoux defined in [10] ¢
“well-balanced scheme.” It is also related to the “piecewise stationary” discretization of 1
source term proposed first by Liu [15] and then by van Leer in [21].

If we try to apply the same definition of the conservation property to the present proble
for which G, and Gz are nonzero, this property does not allow us to analyze of the ne
source terms.

Nevertheless, aewconservation property relative to a stationary solution can be intrc
duced which helps to analyze all the three source t&€emss,, and Gs. The stationary
solution is the one introduced in the previous section.

After concluding in the previous section that a first-order approximation of this solutic
should not be enough for conservation (unlésswas notably reduced) to obtain good
results, the following definitions are introduced.

DEFINITION 2. We say that a scheme satisfies the eXaptoperty regarding the sta-
tionary solution (17)—(18) if it is exact when applied to the stationary prolgle®) given
in Section 3.

DEFINITION 3. We say that a scheme satisfies the approxiGigeperty regarding the
stationary solution (17)—(18) if itis accurate to or@Ax?) when applied to the stationary
problem(SP) given in Section 3.

The behaviour of the different schemes from the point of view of thes€twmperties
is as follows:

(i) The Q-schemes of Roe and van Leer with centred approximations of any of t
source termgGy, k=1, 2, 3) applied to the shallow water equations do not satisfy eithe
the exact nor the approximafeproperty relating to the stationary solution (17)—(18). This
is a consequence of the first-order terms described in a previous section and in [3].

(i) The extensions of th€-schemes of Roe and van Leer applied to the shallow watt
equations satisfy the approximatgroperty relating the stationary solution (17)—(18) if we
use the expression ¢f given by (19) and the approximations (44)—(46). Proceeding as
the previous section for the different cases of (subcritical and supercritical) flow, the pr
of this statement is obtained. More specifically, the difference between the discretizatio
flux and source terms ®(Ax)? in the two components, with the Manning coefficient as
factor multiplying this difference. Hence, the following statement is obtained.

(i) If the friction effect is neglected and the approximations (44) and (45) are cons
dered, then these schemes satisfy the efgmtoperty relating to the stationary solution
(17)—(18) if we consider the expressiontdfgiven by (19).

This behaviour has been shown numerically throughout the previous section. Figures
are related to (i) for whicti-property does not hold. The ex@cproperty is satisfied without
friction as in (iii), which is the case in Figs. 8-9. Finally the approxim&igroperty is
obtained when upwind discretizations for all of the source terms are considered, as
been seen in Figs. 10-11.
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FIG. 12. Froude number. Extension of the Roe scheém€l0,800,M = 0.1, 200 nodes.

5. NUMERICAL RESULTS

5.1. An Asymptotic Analytical Solution for Small Froude Numbers

In previous sections we have analyzed the behaviour of the new schemes in the ce
stationary solutions. In order to show that the conservation property is also a good tes
unsteady problems a transient solution for a small Froude number is obtained in this se
(see Fig. 12).

This solution offers the possibility of comparing the schemes in a test including varie
depth and breadth functions. In the bibliography we have not found any exact analy
solution for the shallow water equations when the geometry changes in that way.

More precisely, in this paper a generalization of the “asymptotic” solution given
Bermidez and Vdzquez [3] for the cas8 =1 is proposed. For small Froude number
an asymptotic solution can be obtained. For this purpose it is convenient to write
equations in a nondimensional form. This can be done by using typical values of time, sy
depth, breadth, and velocity*, L*, H*, B*, U*, respectively, to define new variables anc
functions

o t X ~ h ~ H ~ B u ~
t:—, A:—’ h:—, H: s B:—’ A:—’ A:hA
T* X Lt H* H* Bt u Ut q u
Thus (5) becomes
ah  T*U* 99 _T*U* B' (%)
—= . - = —q N ~ (51)
ot L* 98X L* B(X)
A T*U* A2 1 - T*U* 1 nny T* * A2 é/ o
9g T 9 (97 1 g2 TUT L ppare TUTBX
of L ax\ h 2F2 Lx F2 L* h B®X)
~ T*U*H*"3h~3q|a/M?g, (52)

whereF denotes the Froude number. As is well known, this number represents the |
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between the velocity of particles and the velocity of gravity waves and is given by

U*
NI

F= (53)

Suppose we are concerned with a “relatively short” doniifor which T* ~ L*/U*,
so that (51)—(52) becomes

/

oh 9§ _B'®)
—+ - =-0= 54
ot Tax T VB (4)
~2 A/
a 9 /(6> 1h 1.~ . &B® 430 —4/3A
ot T A% ( SRIEIC Rl A Ve qlaiM*g. (55)

Now we assumeF is small, which is the case for strongly subcritical flows, and we
try to obtain an approximate solution of (55) by asymptotic analysis. By replécamy
g in (54)—(55) by asymptotic expansions with respect to the small parafieted then
identifying the terms of the same degree we easily obtain, for the lowest orderfigand
8o, the equations

ohg  9G  .B®
o T ax - VB (56)
cohg oo
hoa—; = hoH'(%), (57)
together with the boundary conditions
ho(0,£) = ¢ + H (O (58)
Go(L, ) = ¥ (D). (59)

By integrating (56)—(57) and then returning to the primitive variables, we obtain tt
first-order approximate solution to (51)—(52):

ho(X, t) = @(t) + H(X) (60)
o'ty [t
B(x) Jx

Qo(X, ) = ¥ (t) + B(s)ds (61)

which can be compared to the numerical solution obtained by using the schemes consic
in Section 3 for smalfF. Let us remark that to obtain (61) it is necessary to take into accou
that (56) is equivalent to

- dho  8Qo
B — =0,
x) + At + 5%

(62)

whereQo = Bdp.
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TABLE Il
Values of Bed Function at the Points

X 0 50 100 150 200 250 300 350 400 425 435 450 470 475  50(
Z(x) O 0 2.5 5 5 3 5 5 7.5 8 9 9 9 9.1 9

X 505 530 550 565 575 600 650 700 750 800 820 900 950 1000 15C
Z(x) 9 6 55 55 5 4 3 3 2.3 2 1.2 04 0 0 0

5.2. Propagation of a Tidal Wave in a “Relatively Short” Channel with Variable
Depth and Breadth

As a numerical test we compute the propagation of a tidal wave in a “relatively she
channelL* ~ U*T*) with variable depth. More precisely, we take as the geometric dom:
of the flow an interval oL. = 1500 m. The initial and boundary conditions are taken to b

h(x, 0) = H(x) (63)
q(x,00=0 (64)
and
. 4t 1
h,t) = H(O)+4+4 Sln(n (86’ 200" 5)) (65)
q(L,t) =0, (66)

respectively. Equation (65) simulates a tidal wafd en amplitude.

To illustrate the behaviour of the proposed schemes with nonsmooth depth and bre
functions the piecewise linear functions are defined. The breadth function is that consic
in Section 2 (see Fig. 3 and Table ). For the depth the following elections are propo
the first one (see Table II) is the same bed of the channel that has been proposed |
working group on dam break modellifi@], and the second one (see Eq. (67)) tries to tal
into account critical slope values:

8, if [x — 150| < 1500
Z(x) = (67)

0, otherwise

The results from the extensions of the t@Bschemes are shown in Figs. 13—-16 witl
CFL=0.9 and 200 nodes. To illustrate that the conservation property is a good wa;
monitor the behaviour of the schemes for unsteady flows, centred discretization of al
source terms are also presented (see Figs. 17, 18) to compare them with the upwind c

As can be detected in the figures associated with the profile, the bed given by Tak
is consider in the results obtained with the Roe scheme (Figs. 12—-14, 17-18) and the
one given by (67) is used with th@-scheme of van Leer (Figs. 15-15).

The two instants chosen are- 10,800 s which corresponds with the half-risen tide an
the maximum positive velocities, ahe: 32,400 s which corresponds with the half-ebb tidi
and the maximum negative velocities.

2 This selection is not related with the properties of the schemes; it is only to restrict the number of figure
both cases the performances of the schemes are similar.
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zCx 3, hCx ., tJ+z0Cx2

22. DA

14 667 _|

2. S29. 1220. 1520.

FIG. 13. Profile (Z(x), h(x,t) + Z(x)). Extension of the Roe schente- 10,800,M =0.1 (
solution; - approximate solution).

Figure 12 shows that the values of the Froude number are small, as has been assun
the previous section.

Observe that the extensions of tQeschemes give good results when compared to th
asymptotic analytical solution (60)—(61). On the other hand, centred discretizations of
source term$y, k = 1, 2, 3, lead to numerical results with too high spatial differences i
water level and flux. One reason for this bad behaviour is that the latter schemes do
satisfy either the exact or the approxim@&tgroperty.

gCx, t2

1. 8346

1. 2231

. 8115 _| %\ f ;

. OO

FIG. 14. Flux(q). Extension of the Roe scheme 10,800,M =0.1 (
solution).

exact solution;- approximate
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| zCx2J,. hCx, tJ+zCx2
22 oee
14. 667 _|
T s
. DR@ . T
@. 152@.

FIG. 15. Profile (Z(x), h(x,t) + Z(x)). Extension of the Q-scheme of van Lees 32,400, M =0.1
exact solution, e- approximate solution).

(

The main aim of these two last subsections is to test the numerical schemes with rele
problems presented in the literature.

5.3. The Steady Flow over a Bump in a Rectangular Channel

The purpose of this problem is to calculate the steady flow over a bump in a rectanc
channel with constant breadth. It is a classical test problem and it has been considere

example, by thevorking group on dam break modellifg], where it is also detailed how
to compute the analytical solutions.

[ qCx. tD |

. D20

;\,\fm !
N P ]
—-. 610 _| £ i

e
!
r 1
- :‘1 H
f i
1 3 r/\\)'

i bt ?

#

i Xf

é

—-1. 220 _| \,’

1
o
RIS E S s

—-1. 833

FIG. 16. Flux (q). Extension of the Q-scheme of van Lé¢ef 32,400,M = 0.1 (

exact solution; -
approximate solution).
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zC =), hCu, t I+zCx

22. baa

7333

. Boa

2. 5@2a. 12000. 15@@.

FIG.17. Profile(Z(x), h(x, t) + Z(x)). Roe scheme and centred discretization of the source te&,800,
M=0.1( exact solution;e- approximate solution).

The breadth of the channel is constdtx) = 1 m, the length i4 =25 m and the bottom
topography is given by

0.2 - 0.05x — 102, if8<x<1
Z(x) = o ) <x<12 (68)
0, otherwise

According to the boundary and initial conditions, the flow may be subcritical, transcritic
with a steady shock, or supercritical.

qCx. t2 |
6. 573
3. B34
1. @88
—J“' 658 T T T T T T T T T I T T T T
@ S520. 1200. 1520.

FIG. 18. Flux (g). Roe scheme and centred discretization fof the source tee§,800,M =0.1 (
exact solution; #- approximate solution).
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[ 2CxD, 20 xD+hCx, tJ

1. 2502
4 -
>
B =
. 833 _| X,
] X
X
. b
®
417 | |
- @ z z T T T T T T I T T T T
. o2 16. 687 25. oo

FIG. 19. Z(x), h(x,t)+ Z(x) Transcritical flow without shock. Extension of the Q-scheme of van Lee
exact solution;e- approximate solution).

(

e Transcritical flow without shock (Fig. 19):

—Downstream. The water level=0, 66 m is imposed only when the flow is sub-
critical.

—Upstream. The discharge is impos@d= 1.53 nt/s.
e Transcritical flow with shock (Fig. 20):

—Downstream. The water levhl=0, 33 m is imposed.

—Upstream. The discharg@ = 0.18 n¥/s is imposed.

20 x D, 2zCx2+hCx, t2
. 420 =
4 %
3,
] |
% Y
" 1
] oA
. 280 _| 3
i %
i PR
i
140 ’
N ) va) va]
T T T T I T T T T l T T T T
P 7§ ] 8. 333 16. 667 295. YO

L ]

FIG. 20. Z(x),h(x,t)+ Z(x) Transcritical flow with shock. Extension of the Q-scheme of van Lee
exact solution; e- approximate solution).

(
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[ 2CxJ, 2CxJ) +hCx, tD

2. S
“‘*‘M))»m’"‘#k
1. 667 _]
. 833 _]
. 222 . I - :
. P29 16. 667 25. Qo

FIG.21. Z(x), h(x,t)+ Z(x) subcritical flow. Extension of the Q-scheme of van Leer (: exact solution

-o- approximate solution).

e Subcritical flow (Fig. 21):
—Downstream. The water levhl=2 m is imposed.
—Upstream. The discharg@ = 4, 42 /s is imposed.

In the three cases as initial conditions we take a constant water level equal to de It
imposed downstream and the discharge equal to zero.

To prevent the numerical velocity of the mention@dschemes from vanishing when
some of the eigenvalues of the Jacobian matrix of the flux is zero, we apply the Har
regularization (see [11]). The considered ¢healue given by

¢ = 0.1,/gh (69)

As is well known this regularization is especially important for the transcritical cases ne
a sonic point. This regularization is only applied to the numerical flux function, not to tt
numerical source functions.

The comparison of the results with the associated analytical solutions illustrates
improved performance of the discretizations in critical situations. The level of the watel
chosen to show the numerical results because it is more relevant than the discharge
zero for the three cases. We take CELL, Ax = 0.25 m,t = 200 s, where the steady state
is reached.

This election ofAx is sufficient to compute the solutions in Figs. 19 and 21 properly. |
Fig. 20 the shock can be obtained with more accuracy if the number of nodes is increa
An analogous situation is presented in Fig. 23, where the number of nodes is 200 anc
shock is properly computed.

5.4. A Converging—Diverging Channel

In order to analyze the behaviour of the schemes in other relevant problems prese
in the literature two test cases considereded by P.i&&evarroet al. in [4] has been
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| Breadth

T l T T T l T ] T
7] 1900 200 300 400 S500

FIG. 22. Breadth of the channel.

selected: a transcritical case in a steady flow and transient motion in supercritical situa
in a converging—diverging channel with flat bed.

5.4.1. Steady flow.This is an interesting problem to test the efficiency of the discretiz
tion of the source terr®; involving the breadth of the channel. The width variation modifie
the steady-state profiles and due to the boundary conditions a stationary hydraulic jum
pears to connect subcritical and supercritical flows. As it is said in [4], these exampl
related to many practical problems such us flow between bridge piers.

I T T T
IS1%1%] 4200 Sad

L~ 1

exact solutien:- approximate solution).

1 T
%] 10 200

FIG.23. h(x, t) Extension of the Q-scheme of van Leer (:
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| Froude

%] 120 200 a 400 STD

FIG. 24. Froude number.

More precisely, the geometrical domain of the flow is an intervdl ef500 m with flat
bed(Z(x) =0Vx) and a sinusoidal width variation (see Fig. 22) given by

B — {5 — 0.70651 + cog(2r (X520))), if |x — 250 < 150, 70

5, otherwise

Subcritical initial conditions are stated at a depiix, 0) =2 m. As boundary condi-
tions the discharg&(0,t) =20 cum/s at the upstream and a 0.1 m high weir condi
tion at the downstream boundary are imposed. The numerical results show up

[ hix, 52 |
30
20 _|
1@
R
@ T : T I ¥ I T T g
@ 120 200 300 400 S0

FIG. 25. h(x, 5) Extension of the Q-scheme of van Leer.
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L~ 1]

FIG. 26. h(x, 15) extension of the Q-scheme of van Leer.

i
(%] 100

performances of the new extensions and the exact solution (see [4]) is plotted for ¢
parison. As Fig. 23 shows, the water accelerates as it approaches the point of maxi
contraction(B(250) = 3.587 m), the flow becomes critical there and it changes then to ¢
percritical flow that gives rise to a stationary hydraulic jump to connect with the subcriti
profile required by the downstream condition (see Fig. 24 for the Froude number).
The CFL number considered is 0.8,=2.5m, and M=0. The comparison between
the exact solution and also the McCormack TVD scheme (second-order accuracy) ust
Garaa-Navarrcet al.in [4] confirms the improved properties of the proposed schemes.

[ hCx, 1533

32
20 _:
.
7] | T T T T T T
%} 100 200 390 400 =117
L~ ]

FIG. 27. h(x, 150) extension of the Q-scheme of van Leer.
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| hCx, 680>

30
20 _|
10
z T I T ‘ T . T I T
@ 122 2@ 300 ) 500

L~ 1

FIG. 28. h(x, 600 extension of the Q-scheme of van Leer.

5.4.2. Surge propagation through converging—diverging chanrighis test problem
allows us to show the performances of the extensions in a transitory motion and for Fro
number greater than the considered in the tidal wave propagation problem.

In this case the exact solution does not exist; then the numerical results are analy
from a qualitative point of view and can be compared with those presented in [4] with t
McCormack TVD scheme.

The time evolution of a surge in the same channel of the previous test is considere
bore 9.79 m deep of 1000 cum/s propagates downstream over still water 1-m deep. A
weir is supposed to be placed downstream. Also in this case=J¥8, M =0, and 200 is
the number of nodes.

| Froude

T
%] 1200 200 300 40 |S]7]7]

FIG. 29. Froude numbetr = 600.
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The situation at =5s is plotted in Fig. 25. At this time the weir condition close
the channel and the supercritical front advances through the contracting channel. At
t =15s (see Fig. 26) the front has surpassed the point of maximum contraction. And
att =150s (see Fig. 27) the downstream end is reached by a front similar to the in
one so that is partially reflected and partially transmitted over the weir. The reflected s
starts travelling upstream and it propagates until it becomes a stationary hydraulic j
in the contracting region. This final steady state is shown in Fig.t28600s) and the
corresponding Froude number is in Fig. 29.

6. CONCLUSIONS

In this this paper the shallow water equations in channels with irregular geome
are solved with extensions of th@-schemes of van Leer and Roe. The main contribt
tion of this work is an improved discretization of the source terms. The efficiency
the proposed schemes is proved. This analysis is done in terms of a conservation
erty which is related with a stationary solution also introduced in this paper. This
lution allows to test the numerical schemes in subcritical and supercritical cases
variable geometry and taking into account the friction effect. To complete this study
asymptotic unsteady solution for small Froude number is also obtained and the diffe
schemes are compared with this solution. The comparison of the studied schemes
high-order methods like McCormack TVD scheme [4] in relevant test problems with |
draulic jumps and transient motions for large Froude numbers is also satisfactory. Nu
ical results and theoretical developments now in progress withi&alavarro [5] con-
firm the importance of upwinding the source terms also in channels of arbitrary ct
section.
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