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This paper deals with the numerical solution of the shallow water equations in
channels with irregular geometry but with a locally rectangular cross section. This
type of channel leads to the presence of source terms involving the gradient of the
depth and the breadth of the channel. Extensions of theQ-scheme of van Leer and
Roe are proposed which generate natural upwind discretizations of the source terms.
The consistency of the proposed schemes is analyzed. A stationary solution that
emphasizes the source terms considered is obtained which is used to test the proposed
extensions in terms of a “conservation” property. A low-order asymptotic unsteady
analytical solution for a small Froude number is also obtained. The numerical results
presented confirm the improved properties of the proposed schemes for a transient
test problem. c© 1999 Academic Press
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1. INTRODUCTION

Numerical solutions of hydrodynamic problems offer the possibility of predicting the
behaviour of the relevant variables in practical situations. In particular, the one-dimensional
shallow water equations can be solved in order to determine the flow variables in channels.

In these equations, the channel or river geometry, characterized by the bed depth and cross
section functions, has a special relevance. For channels with variable bed and rectangular
cross section there are source terms involving the bed slope, as well as the breadth function
and its derivative; moreover, consideration of bottom friction leads to an additional source
term.

The hyperbolic system of homogeneous shallow water equations can be written in con-
servative form and the presence of source terms leads to the mathematical framework of
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a numerical solution of hyperbolic systems of conservation laws with source terms (see
LeVeque [13], Godlewski and Raviart [8], and Toro [20]).

Although upwind schemes were initially developed for the Euler equations, in recent years
the number of papers devoted to the numerical solution of the shallow water equations with
Riemann solvers has increased (see Glaister [6], Alcrudo and Garc´ıa Navarro [1]). The
discretization of the source terms has been studied by a large number of authors (see, e.g.,
[19, 7, 17, 14, 10]).

In previous papers (Berm´udez and V´azquez [3], for the one-dimensional case, and
Bermúdez, Dervieux, Desideri, and V´azquez [2], in the two-dimensional case) the im-
portance of upwinding the source term involving the bed slope in channels with constant
breadth has been proved. In this paper, in order to motivate the advantage of upwinding the
more general source terms, we start by showing the unsatisfactory results obtained when
using centred discretizations in a stationary problem. These results are compared with the
corresponding exact stationary solution also obtained in the present paper. This solution will
be referenced when we study the conservation of the schemes. An upwind discretization
for these source terms is also proposed. In some sense, the source terms are upwinded in a
similar way to the numerical flux, although there are different expressions for each method.
We generalize for nonuniform meshes theQ-schemes of van Leer and Roe with tools intro-
duced in Berm´udez and V´azquez [3] to nonhomogeneous problems. This generalization is
very important in order to use the adaptive mesh techniques to reduce the number of nodes
and to improve the accuracy.

The consistency and conservation of the proposed schemes for nonuniform meshes are
analyzed from the theoretical point of view. Let us notice that the two upwind schemes
considered here are conservative for homogeneous problems. Nevertheless, the conservation
of the extended schemes must be proved in the presence of source terms.

As in [3], the introduction of the conservation property is connected with steady solutions.
More particularly, a numerical scheme applied to the shallow water equations is termed
conservative if it approximates, exactly or with order greater than one, a stationary solution
when including the different source terms studied. It is proved that these extensions verify
this property, and the new steady solution is present this study.

In addition to the theoretical analysis of the properties of the proposed schemes, numerical
results are shown. In order to illustrate the improved performance of the new extensions, the
results are compared not only with the mentioned stationary solution associated with the
conservation property but also with an “asymptotic” unsteady solution that is also obtained
in this paper.

It is worth noting at this point that the analytical solutions presented in the literature cor-
respond to either constant depth and variable breadth or constant breadth and variable depth
(see MacDonald [16]). An important contribution of this work comes from the possibility
of analyzing the joint behaviour of both source terms by means of the asymptotic solution
obtained here, which includes variable depth and breadth and also bottom friction effects.
In order to deduce this solution it is convenient to write the equations in dimensionless form
so that the solution is obtained by means of asymptotic expansions in terms of the Froude
number. The solution is valid for small values of this parameter and when the domain is
“small.”

The improved properties of the proposed schemes are also shown in problems presented
in the literature: the flow over a bump in critical situations (see [9]) and two test prob-
lems described by Garc´ıa-Navarroet al. [4]; a steady flow (with a hydraulic jump) and a
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surge propagation (a transitory motion with supercritical situations), both in a converging–
diverging channel with constant depth.

The shallow water equations are stated in Section 2. The numerical discretization is
presented in Section 3, where the general class of upwind methods for nonhomogeneous
conservation laws introduced in Berm´udez and V´azquez [3] is generalized to nonuniform
meshes and applied to the source terms. For the shallow water equations these schemes are
also compared with a “conservation property related to a stationary solution” in Section 4.
Finally, in Section 5, numerical results are shown and compared with those obtained using
centred discretizations of the source terms and with the “analytical” solution for the tidal
propagation test and also for the mentioned classical problems. Finally, the conclusions are
presented.

2. SHALLOW WATER EQUATIONS FOR THE CHANNELS

WITH RECTANGULAR CROSS SECTION

The one-dimensional flow in an open channel of variable breadth and depth, but with a
locally rectangular cross section, may be described by the Saint-Venant equations which
are written in conservative form as

∂W̃

∂t
(x, t)+ ∂ F̃

∂x
(W̃(x, t)) = G̃(x, W̃(x, t)), (1)

W̃ =
(

S

Su

)
=
(

S

Q

)
, F̃(W̃) =

(
Q

Q2

S

)
(2)

G̃(x, W̃) =
 0

−gS
(
∂h
∂x − H ′(x)

)− gQ|Q|M2

SR4/3
h

 (3)

(see Fig. 1).

FIG. 1. Shallow domain.
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The two components of the conservative variableW̃ represent the cross-section area
S= S(x, t) and the massflowQ= Q(x, t)= Su, andu andh denote the average horizontal
velocity and the total height above the bottom of the channel, at positionx and timet ,
respectively. The hydraulic radius is denoted byRh, M is the Manning coefficient,Z= Z(x)
is the bottom function, andH(x) the depth of the same point but from a fixed reference
level Rl = Z(x)+ H(x). Ä= [0, L] denotes the projection of the domain occupied by the
fluid onto theX axis.

We consider a locally rectangular channel, so that

S(x, t) = B(x)h(x, t), (4)

whereB(x) is the breadth of the channel.
Replacing the expressionSof (4) in Eq. (1) we obtain a new form of the equations with

new unknowns. The components of the new unknown, calledw, are the height of the fluidh
andq= hu. Let us observe that these are the same as in the one-dimensional shallow water
equations for channels with constant breadth (i.e., whenB(x)= 1 ∀x ∈Ä).

∂w

∂t
(x, t)+ ∂F

∂x
(w(x, t)) =

3∑
k=1

Gk(x, w(x, t)), (5)

where

w =
(

h
q

)
, F(w) =

(
q

q2

h + 1
2gh2

)
, G1(x, w) =

(
0

ghH′(x)

)
(6)

G2(x, w) =
 −q B′(x)

B(x)

−q2

h
B′(x)
B(x)

 , G3(x, w) =
(

0
−M2gq

∣∣ q
h

∣∣(Rh)
−4/3

)
. (7)

The reason why three source terms have been distinguished is to allow them to be dis-
cretized in separate ways. The source termG1 includes the bed slope,G2 contains the
breadth variation, and finallyG3 models the bottom friction.

The boundary conditions will be introduced as

h(0, t) = ϕ(t)+ H(0) (8)

q(L , t) = ψ(t), (9)

whereϕ(t) andψ(t) will be given functions.

3. NUMERICAL DISCRETIZATION

An explicit time discretization is used, together with a finite volume method with up-
winding to discretize in space. Starting from an approximationWn of the exact solution
w(·, tn) and using the explicit Euler scheme, we obtain

Wn+1(x)−Wn(x)

1t
+ ∂F

∂x
(Wn(x)) =

3∑
k=1

Gk(x,W
n). (10)
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FIG. 2. Cell Ci .

The spatial domain is discretized by taking an arbitrary meshC1x. Let {xi : i ∈Z} be the
nodes ofC1x, where1x denotes the norm

1x = sup
xi ∈ C1x

|xi − xi−1| (11)

of C1x. The cellCi is defined as (see Fig. 2)

Ci = (xi−1/2, xi+1/2) =
(

xi − xi − xi−1

2
, xi + xi+1− xi

2

)
,

so that its length is given byAi = (xi+1− xi−1)/2.
The approximate solutionWn to w at tn is considered as a piecewise constant function

given by

Wn(x) = Wn
i for x ∈Ci .

To obtain the spatial approximation of (1), we integrate (10) over the cellCi . This leads
to the explicit scheme

Wn+1
i −Wn

i

1t
+ Fn

i+1/2− Fn
i−1/2

1x
=

3∑
k=1

Gn
ki , (12)

whereFn
i±1/2 andGn

ki denote approximations ofF(Wn(xi±1/2))and(1/Ai )
∫

Ci
Gk(x,Wn) dx,

respectively.

3.1. The Q-Schemes of Roe and van Leer

Three-point upwind schemes can be obtained by replacingFn
i±1/2 by values of a numerical

flux function,φ. More precisely,

Fn
i−1/2 = φ

(
Wn

i−1,W
n
i

)
, Fn

i+1/2 = φ
(
Wn

i ,W
n
i+1

)
. (13)

In particular, theQ-schemes are a family of three point upwind schemes corresponding to
numerical fluxes of the form

φ(V,W) = F(V)+ F(W)

2
− 1

2
|Q(V,W)|(W − V), (14)
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whereQ is a matrix characteristic of eachQ-scheme having a continuous dependence on
the two statesV andW. In this work we use theQ-schemes of van Leer and Roe:

• The Q-scheme of van Leer [12] corresponds to a choice ofQ equal to the Jacobian
matrixA of the flux evaluated at the arithmetic mean value ofV andW:

Q(V,W) = A
(

V +W

2

)
. (15)

• The Roe scheme is based on a linearization of the flux. In the caseQ is a diagonalizable
matrix which satisfies the property:

F(W)− F(V) = Q(V,W)(W − V). (16)

There are different ways of choosing a matrixQ satisfying (16). Roe [18] proposed to
defineQ as the Jacobian matrixA evaluated at some statẽW = W̃(V,W) known as the
Roe averageof V andW. In [6] Glaister givesW̃ for the shallow water equations.

The scheme is given by (12), (13), and (14).

3.2. A New Stationary Solution: Analysis of Centred Discretizations of the Source Terms

As already mentioned, if the geometry changes along the channel thenG1 andG2 do not
vanish. Moreover, if we include bed friction we also have the source termG3.

Consider first centred discretizations of the source terms. In previous papers, [3, 2],
we have proved that centred discretizations of the source termG1, combined with flux-
difference techniques for the flux term (14), are responsible for spurious numerical waves
when the time discretization step is not small enough. This analysis is related to the ability
of a numerical scheme to approximate, exactly or with order greater than one, the stationary
solution of “water at rest”(h≡ H,q≡ 0).

In the present work a similar analysis is performed. However, the previously mentioned
stationary solution (water at rest) involvesq≡ 0 so thatG2 andG3 vanish and no conclusions
can be drawn. Instead, we propose a new stationary solution in which the source termsG2

andG3 play a role in order to derive information about their discretization. For this reason
u is taken as the inverse function ofB andh is constant, giving

h(x, t) = h̄ (17)

q(x, t) = h̄k

B(x)
, (18)

whereh̄ andk are constants.
Consider a channel whose breadth function is known and where bottom friction is taken

into account. The question is how to determine the depth function so that (17)–(18) is
a solution of the shallow water equations. After some algebraic manipulation the depth
function H is found to be given by

H(x) = H(xI )+ k2

2g

(
1

B2(x)
− 1

B2(xI )

)
+ M2R−4/3

h k|k|
∫ x

xI

1

B2(s)
ds. (19)
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TABLE I

Values of Breadth Function at the Pointsx

x 0 50 100 150 200 250 300 350 400 425 435 450 470 475 500
B(x) 40 40 30 30 20 30 30 25 25 30 35 35 40 40 40

x 505 530 550 565 575 600 650 700 750 800 820 900 950 1000 1500
B(x) 45 45 50 45 40 40 30 40 40 5 40 35 25 40 40

As a test problem a subcritical case is chosen. Then the eigenvalues of the Jacobian matrix
of the flux must satisfy

λ1(w) = q

h
+
√

gh> 0 (20)

λ2(w) = q

h
−
√

gh< 0. (21)

Taking the exact solution (17), (18) into account, the relations (20) and (21) imply that∣∣∣∣ k√
gh̄

∣∣∣∣< min
x∈Ä

B(x). (22)

For the breadth function we take an irregular function in order to study the behaviour of
the schemes near points of discontinuity. In particular we select the same breadth function
considered by theworking group on dam break modelling[9] to test the behaviour of the
schemes for the source terms (see Fig. 3 and Table I). For this function the minimum value
in (22) is 5 m. Thus two possible values ofh̄ andk are

h̄ = 1 m, k = 10. (23)

In order to perform an independent analysis of the source termsG2 andG3, we begin by
assuming thatM ≡ 0 so as to be able to consider onlyG2.

FIG. 3. Breadth of the channel.
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It is important to notice that in this case theQ matrix is the same for both the Roe and van
Leer Q-schemes. Therefore the numerical results we need to consider only one of them.
The upwind discretization proposed in [3] is used forG1 for the Q-scheme of van Leer,
and a centred scheme is applied to the source termG2. In order to examine this choice the
discretizations are detailed. It is considered that at timet = tn the approximated solution
and the exact solution are equal:

hn
i = h̄, qn

i =
h̄k

Bi
∀i, (24)

and

B(xi ) = Bi , Hi = H1+ k2

2g

(
1

B2
i

− 1

B2
1

)
∀i . (25)

Then the flux and source term discretizations to compute the solution at timet = tn+1 are

(
φ
(
Wn

i ,W
n
i+1

)− φ(Wn
i−1,W

n
i

)
Ai

)
1

= kh̄

2Ai

(
1

Bi+1
− 1

Bi−1

)
− k2

√
gh̄

4gAi

[
1

B2
i+1

− 2

B2
i

+ 1

B2
i−1

]
(26)

(
φ
(
Wn

i ,W
n
i+1

)− φ(Wn
i−1,W

n
i

)
Ai

)
2

= k2h̄

2Ai

(
1

B2
i+1

− 1

B2
i−1

)
− kh̄

2Ai

√
gh̄

[
1

Bi+1
− 2

Bi
+ 1

Bi−1

]

− k3
√

gh̄

8gAi

[(
1

Bi
+ 1

Bi+1

)(
1

B2
i+1

− 1

B2
i

)
−
(

1

Bi−1
+ 1

Bi

)(
1

B2
i

− 1

B2
i−1

)]
(27)

(Gi 1)1 = −k2
√

gh̄

4gAi

[
1

B2
i+1

− 2

B2
i

+ 1

B2
i−1

]
(28)

(Gi 1)2 = k2h̄

4Ai

[
1

B2
i+1

− 1

B2
i−1

]
− k3

√
gh̄

8gAi

[(
1

Bi
+ 1

Bi+1

)(
1

B2
i+1

− 1

B2
i

)

−
(

1

Bi−1
+ 1

Bi

)(
1

B2
i

− 1

B2
i−1

)]
(29)

(Gi 2)1 = kh̄

2Ai

(
1

Bi+1
− 1

Bi−1

)
(30)

(Gi 2)2 = k2h̄

4Ai

[
1

B2
i+1

− 1

B2
i−1

]
. (31)

Figures 4 and 5 show the corresponding results obtained withCFL= 0.9,1x= 3 m, and
after 500 s, where the steady state is reached. The numerical results for the flowq show
diffusive effects (see Fig. 4). Analysis of this effect leads to the conclusion that it is due to
the centred discretization used.
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FIG. 4. Flux (q). Q-scheme of van Leer with centred discretization ofG2, t = 500 (——— exact solution;
-∗- approximate solution).

The stationary problem for which (17)–(18) is a solution, ifM ≡ 0, is

(SP)


∂q
∂x = −q B′(x)

B(x)

∂
∂x

(
q2

h̄

)
= −q2

h̄
B′(x)
B(x) + gh̄H′(x).

(32)

A first analysis of the numerical schemes would lead to a test if the two members of (32)
were discretized in an analogous way. Next, it will be proved that the difference between

FIG. 5. Profile (Z(x), h(x, t)+ Z(x)). Q-scheme of van Leer with centred discretization ofG2, t = 500
(——— exact solution; -◦- approximate solution).
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both discretizations are terms of order one in space. Taking the expressions (24)–(29) into
account this difference can be written

φ
(
Wn

i ,W
n
i+1

)− φ(Wn
i−1,W

n
i

)
Ai

−
2∑

k=1

Gik =
 0

− kh̄
2Ai

√
gh̄
[

1
Bi+1
− 2

Bi
+ 1

Bi−1

]
+O(1x)2

.
(33)

Thus, to first order, the difference between (32) and (33) is the diffusive term arising from
the upwinded flux discretization,

−1x
(√

gh̄ qx

)
x

which, in this case, is equal to

−1x

(√
gh̄ q

B′(x)
B(x)

)
x

.

In other words, the equivalent, or “modified,” equation corresponding to the second equa-
tion of the stationary problem (32) and arising from upwinding the flux andG1 discretization
and from a centred discretization ofG2 is

∂

∂x

(
q2

h̄

)
= −q2

h̄

B′(x)
B(x)

+ gh̄H′(x)−1x
∂

∂x

(√
gh̄
∂q

∂x

)
. (34)

It can also be shown that the diffusive effect inq vanishes when a centred discretization
of 1x(

√
gh̄ qx)x is introduced, which cancels the analogous term in (33). In that case, the

error term inh is also cancelled. If this cancellation does not occur, the error introduced in
h can be seen in Fig. 5.

In relation to the discretization ofG3, taking into account the expression for the depth (19),
we observe a term whose derivative is analogous toG3. Hence, since we have concluded
in previous papers the importance of upwindingG1, it seems reasonable to upwind this
source term also. In any case, if we compute the difference between a centred discretization
of G3 and the upwind discretization of the analogous term inG1 we obtain, for a uniform
mesh,

1x
g2M2R−4/3

h k|k|
4
√

gh̄
6qxxx, (35)

which is a dispersive term.
The expression considered in this paper for the hydraulic radius is that proposed by the

working group on dam break modelling[9],

Rh = A

P
= B(x)h(x, t)

B(x)
= h; (36)

that is, the perimeterP is only the breadth. Nevertheless the conclusions of this study are
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FIG. 6. Profile (Z(x), h(x, t)+ Z(x)). Q-scheme of van Leer with centred discretization ofG2 and G3,
M = 0.1 (——— exact solution; -◦- approximate solution).

also valid for the expression

Rh = B(x)h(x, t)

B(x)+ 2h(x, t)
. (37)

Using the previous test case but now with friction, with the Manning coefficient M= 0.1,
we see in Fig. 7, not only the regularizing effect due to the centred discretization ofG2, but
also a new effect due to the dispersive term related to the centred discretization ofG3 (see
also Fig. 6). Also in this caseCLF= 0.9 and1x= 3 m.

FIG. 7. Flux (q). Q-scheme of van Leer with centred discretization ofG2 andG3, M = 0.1 (——— exact
solution; -∗- approximate solution).
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In order to avoid these bad effects, upwind discretizations for all source terms will be
used. In the next section we will prove that the new scheme computes the stationary solution
exactly, or with order greater than one.

3.3. Upwind Discretizations of the Source Terms

We now describe in detail the definitions proposed in V´azquez-Cend´on [22] to upwind
the source terms for general meshes:

• The integral ofGk over the cellCi is split in the sum of two integrals on the subcells
Ti L andTi R,

1

Ai

∫
Ci

Gk(x,W
n) dx = 1

Ai

[∫
Ti L

Gk(x,W
n) dx+

∫
Ti R

Gk(x,W
n) dx

]
, k = 1, 2, 3,

(38)

whereTi L = (xi−1/2, xi )andTi R= (xi , xi+1/2)are subcells of the cellCi , as has been detailed
in Fig. 2.
• Continuous functionŝGk, k= 1, 2, 3, giving an average ofGk on the subcellsTi L and

Ti R are defined. Then̂Gk, k= 1, 2, 3, also depend on the contiguous nodes. The discretiza-
tion of the source terms is then given by

1

Ai

[
ATi L Ĝk

(
xi−1, xi ,W

n
i−1,W

n
i

)+ ATi RĜk
(
xi , xi+1,W

n
i ,W

n
i+1

)]
, k = 1, 2, 3, (39)

where ATi L = (xi − xi−1)/2 and ATi R = (xi+1 − xi )/2 denote the length ofTi L and Ti R,
respectively.
• Finally, to obtain an upwind discretization of the source terms it only remains to define

ψLk andψRk, k= 1, 2, 3. These functions will give upwind values of the source terms on
both sides of nodexi , on the subcellsTi L andTi R, respectively. In summary, we propose an
upwind definition of the source terms as

Gn
ki =

1

Ai

[
ATi LψLk

(
xi−1, xi ,W

n
i−1,W

n
i

)+ ATi RψRk
(
xi , xi+1,W

n
i ,W

n
i+1

)]
, k = 1, 2, 3.

(40)

In Bermúdez and V´azquez [3] the following source functions are proposed:

ψLk(x, y,V,W) = [ I + |Q(V,W)|Q−1(V,W)]Ĝk(x, y,V,W) (41)

ψRk(x, y,V,W) = [ I − |Q(V,W)|Q−1(V,W)]Ĝk(x, y,V,W). (42)

For the functionsĜk the following is proposed:

Ĝk(x, y,V,W) = Gk

(
x + y

2
,

V +W

2

)
, k = 1, 2, 3. (43)

We have described the construction of the schemes and, knowing the form of the source
terms, it is only necessary to make precise the approximation to the derivative or to the
integral of the functions which appear in the centred source termsĜk, k= 1, 2, 3. Even if
we know analytical expressions for these functions,for the sake of consistency we shall use
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FIG. 8. Profile(Z(x), h(x, t)+ Z(x)). Extension of the Q-scheme of van Leert = 500,M = 0 (——— exact
solution; -◦- approximate solution).

the approximations:

H ′
(

x + y

2

)
≈ H(y)− H(x)

y− x
(44)

B′
(

x + y

2

)
≈ B(y)− B(x)

y− x
(45)∫ y

x

1

B2(s)
ds≈

(
1

B2(x)
+ 1

B2(y)

)
(y− x)

2
. (46)

We now present the results obtained with these approximations for the test problem
presented at the beginning of this section: The CFL number is 0.9 and1x= 3 m without
friction (M= 0) in Figs. 8 and 9; and with friction(M= 0.1) in Figs. 10 and 11. In either
of the two cases1 a considerable increase in accuracy can be observed, particularly for the
case without friction(M= 0), where no difference between the exact and the approximate
solution can be seen, and even if M= 0.1, we can also observe the efficiency of the proposed
extensions.

Later on in this paper, in the section devoted to the conservation property, we will refer
back to the stationary solution (17)–(18) and give a more rigorous interpretation of the
numerical results.

Next we study the consistency of the proposed extensions. In order to do this we recall
the definition of consistency relative to the discretizaton of the source terms introduced in
Vázquez-Cend´on [22] for nonuniform meshes.

1 As has already been mentioned, for these solutions theQ matrix is the same for the two schemes considered,
and so only the results corresponding to theQ-scheme of van Leer are shown.
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FIG. 9. Flux (q). Extension of the Q-scheme of van Leert = 500,M = 0 (——— exact solution; -∗- approx-
imate solution).

Consistency. As is well known, the numerical fluxφ of an upwind scheme isconsistent
with the continuous flux F(see, for instance, [8]) if the following equality holds:

φ(W,W) = F(W) ∀W ∈ Rp. (47)

In the case ofG≡ 0, this definition coincides with the classical notion of consistency; that
is, the discretization error goes to zero when1x goes to zero.

FIG. 10. Profile (Z(x), h(x, t)+ Z(x)). Extension of the Q-scheme of van Leert = 500, M = 0.1 (———
exact solution; -◦- approximate solution).
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FIG. 11. Flux (q). Extension of the Q-scheme of van Leert = 500, M = 0.1 (——— exact solution; -∗-
approximate solution).

If G 6≡ 0 we introduce the following definition:

DEFINITION 1. The discretization of the source terms given by (40) is said to be consistent
if it satisfies

lim
1x→0

U,V→W

1

Ai

[
ATi LψLk(xi−1, xi ,U,W)+ ATi RψRk(xi , xi+i ,W,V)

]− Gk(xi ,W) = 0

∀i ; k = 1, 2, 3. (48)

In what follows, necessary conditions to obtain consistency in the sense of Definition 1
are detailed.

Let us remark that the mesh can be nonuniform. In this case, to obtain consistency it is
necessary that the mesh satisfy the property ofasymptotic local uniformity:

lim
1x→0

|xi − xi+1|
|xi − xi−1| = 1 ∀i . (49)

Then it is easy to prove that, if{C1x} is a family of meshes with property (49) andψL

andψR are continuous functions, the discretization of the source terms given by (40) is
consistent with the source terms if and only if the numerical source functions satisfy the
relation

ψLk(x, x,W,W)+ ψRk(x, x,W,W)

2
= Gk(x,W), k = 1, 2, 3. (50)

It is obvious that the source terms defined previously satisfy the relations given in (50)
so that we have consistency of the schemes.

4. A C-PROPERTY RELATIVE TO A STATIONARY SOLUTION

In previous papers [3, 2] devoted to the numerical solution of the shallow water equations
only the source term involving the bed slope is taken into account. A centred discretization
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of this term gives rise to spurious waves. The analysis of this phenomenon brings about the
definition of a “conservation property” introduced by Berm´udez and V´azquez in [3]. This
definition characterizes the order with which a numerical scheme approximates a steady
solution representing water at rest(h≡ H,q≡ 0). In this solution the importance of the term
G1 is noted. If the conservation property is not satisfied (exactly or approximately), then
the propagation of spurious waves in nonstationary problems is also detected. Moreover,
the idea of this property is to preserve what Greenberg and LeRoux defined in [10] as a
“well-balanced scheme.” It is also related to the “piecewise stationary” discretization of the
source term proposed first by Liu [15] and then by van Leer in [21].

If we try to apply the same definition of the conservation property to the present problem,
for which G2 andG3 are nonzero, this property does not allow us to analyze of the new
source terms.

Nevertheless, anewconservation property relative to a stationary solution can be intro-
duced which helps to analyze all the three source termsG1,G2, andG3. The stationary
solution is the one introduced in the previous section.

After concluding in the previous section that a first-order approximation of this solution
should not be enough for conservation (unless1x was notably reduced) to obtain good
results, the following definitions are introduced.

DEFINITION 2. We say that a scheme satisfies the exactC-property regarding the sta-
tionary solution (17)–(18) if it is exact when applied to the stationary problem(SP) given
in Section 3.

DEFINITION 3. We say that a scheme satisfies the approximateC-property regarding the
stationary solution (17)–(18) if it is accurate to orderO(1x2)when applied to the stationary
problem(SP) given in Section 3.

The behaviour of the different schemes from the point of view of these twoC-properties
is as follows:

(i) The Q-schemes of Roe and van Leer with centred approximations of any of the
source terms(Gk, k= 1, 2, 3) applied to the shallow water equations do not satisfy either
the exact nor the approximateC-property relating to the stationary solution (17)–(18). This
is a consequence of the first-order terms described in a previous section and in [3].

(ii) The extensions of theQ-schemes of Roe and van Leer applied to the shallow water
equations satisfy the approximateC-property relating the stationary solution (17)–(18) if we
use the expression ofH given by (19) and the approximations (44)–(46). Proceeding as in
the previous section for the different cases of (subcritical and supercritical) flow, the proof
of this statement is obtained. More specifically, the difference between the discretization of
flux and source terms isO(1x)2 in the two components, with the Manning coefficient as a
factor multiplying this difference. Hence, the following statement is obtained.

(iii) If the friction effect is neglected and the approximations (44) and (45) are consi-
dered, then these schemes satisfy the exactC-property relating to the stationary solution
(17)–(18) if we consider the expression ofH given by (19).

This behaviour has been shown numerically throughout the previous section. Figures 4–7
are related to (i) for whichC-property does not hold. The exactC-property is satisfied without
friction as in (iii), which is the case in Figs. 8–9. Finally the approximateC-property is
obtained when upwind discretizations for all of the source terms are considered, as has
been seen in Figs. 10–11.
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FIG. 12. Froude number. Extension of the Roe schemet = 10,800,M = 0.1, 200 nodes.

5. NUMERICAL RESULTS

5.1. An Asymptotic Analytical Solution for Small Froude Numbers

In previous sections we have analyzed the behaviour of the new schemes in the case of
stationary solutions. In order to show that the conservation property is also a good test for
unsteady problems a transient solution for a small Froude number is obtained in this section
(see Fig. 12).

This solution offers the possibility of comparing the schemes in a test including variable
depth and breadth functions. In the bibliography we have not found any exact analytical
solution for the shallow water equations when the geometry changes in that way.

More precisely, in this paper a generalization of the “asymptotic” solution given in
Bermúdez and V´azquez [3] for the caseB≡ 1 is proposed. For small Froude numbers
an asymptotic solution can be obtained. For this purpose it is convenient to write the
equations in a nondimensional form. This can be done by using typical values of time, space,
depth, breadth, and velocity,T?, L?, H ?, B?,U ?, respectively, to define new variables and
functions

t̂ = t

T?
, x̂ = x

L?
, ĥ = h

H ?
, Ĥ = H

H ?
, B̂ = B

B?
, û = u

U ?
, q̂ = ĥû.

Thus (5) becomes

∂ ĥ

∂ t̂
+ T?U ?

L?
∂q̂

∂ x̂
= −q̂

T?U ?

L?
B̂
′
(x̂)

B̂(x̂)
(51)

∂q̂

∂ t̂
+ T?U ?

L?
∂

∂ x̂

(
q̂2

ĥ
+ 1

2F 2
ĥ

2
)
= T?U ?

L?
1

F 2
ĥĤ
′
(x̂)− T?U ?

L?
q̂2

ĥ

B̂
′
(x̂)

B̂(x̂)

− T?U ?H ?− 4
3 ĥ−

4
3 q̂|û|M2g, (52)

whereF denotes the Froude number. As is well known, this number represents the ratio



514 MARÍA ELENA V ÁZQUEZ-CENDÓN

between the velocity of particles and the velocity of gravity waves and is given by

F = U ?

√
gH?

. (53)

Suppose we are concerned with a “relatively short” domainL? for which T? ∼ L?/U ?,
so that (51)–(52) becomes

∂ ĥ

∂ t̂
+ ∂q̂

∂ x̂
= −q̂

B̂
′
(x̂)

B̂(x̂)
(54)

∂q̂

∂ t̂
+ ∂

∂ x̂

(
q̂2

ĥ
+ 1

F 2

ĥ
2

2

)
= 1

F 2
ĥĤ
′
(x̂)− q̂2

ĥ

B̂
′
(x̂)

B̂(x̂)
− L?H ?−4/3ĥ−4/3q̂|û|M2g. (55)

Now we assumeF is small, which is the case for strongly subcritical flows, and we
try to obtain an approximate solution of (55) by asymptotic analysis. By replacingĥ and
q̂ in (54)–(55) by asymptotic expansions with respect to the small parameterF and then
identifying the terms of the same degree we easily obtain, for the lowest order termsĥ0 and
q̂0, the equations

∂ ĥ0

∂ t̂
+ ∂q̂0

∂ x̂
= −q̂

B̂
′
(x̂)

B̂(x̂)
(56)

ĥ0
∂ ĥ0

∂ x̂
= ĥ0Ĥ

′
(x̂), (57)

together with the boundary conditions

ĥ0(0, t̂) = ϕ̂(t̂)+ Ĥ(0) (58)

q̂0(L , t̂) = ψ̂(t̂). (59)

By integrating (56)–(57) and then returning to the primitive variables, we obtain the
first-order approximate solution to (51)–(52):

h0(x, t) = ϕ(t)+ H(x) (60)

q0(x, t) = ψ(t)+ ϕ
′(t)

B(x)

∫ L

x
B(s) ds (61)

which can be compared to the numerical solution obtained by using the schemes considered
in Section 3 for smallF . Let us remark that to obtain (61) it is necessary to take into account
that (56) is equivalent to

B̂(x)+ ∂ ĥ0

∂t
+ ∂ Q̂0

∂ x̂
= 0, (62)

whereQ̂0 = B̂q̂0.
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TABLE II

Values of Bed Function at the Pointsx

x 0 50 100 150 200 250 300 350 400 425 435 450 470 475 500
Z(x) 0 0 2.5 5 5 3 5 5 7.5 8 9 9 9 9.1 9

x 505 530 550 565 575 600 650 700 750 800 820 900 950 1000 1500
Z(x) 9 6 5.5 5.5 5 4 3 3 2.3 2 1.2 0.4 0 0 0

5.2. Propagation of a Tidal Wave in a “Relatively Short” Channel with Variable
Depth and Breadth

As a numerical test we compute the propagation of a tidal wave in a “relatively short”
channel(L?∼U ?T?)with variable depth. More precisely, we take as the geometric domain
of the flow an interval ofL = 1500 m. The initial and boundary conditions are taken to be

h(x, 0) = H(x) (63)

q(x, 0) = 0 (64)

and

h(0, t) = H(0)+ 4+ 4 sin

(
π

(
4t

86, 400
− 1

2

))
(65)

q(L , t) = 0, (66)

respectively. Equation (65) simulates a tidal wave of 4 m amplitude.
To illustrate the behaviour of the proposed schemes with nonsmooth depth and breadth

functions the piecewise linear functions are defined. The breadth function is that considered
in Section 2 (see Fig. 3 and Table I). For the depth the following elections are proposed:
the first one (see Table II) is the same bed of the channel that has been proposed by the
working group on dam break modelling[9], and the second one (see Eq. (67)) tries to take
into account critical slope values:

Z(x) =
{

8, if
∣∣x − 1500

2

∣∣ ≤ 1500
8 ,

0, otherwise.
(67)

The results from the extensions of the twoQ-schemes are shown in Figs. 13–16 with
CFL= 0.9 and 200 nodes. To illustrate that the conservation property is a good way to
monitor the behaviour of the schemes for unsteady flows, centred discretization of all the
source terms are also presented (see Figs. 17, 18) to compare them with the upwind ones.

As can be detected in the figures associated with the profile, the bed given by Table II
is consider in the results obtained with the Roe scheme (Figs. 12–14, 17–18) and the other
one given by (67) is used with theQ-scheme of van Leer (Figs. 15–16).2

The two instants chosen aret = 10,800 s which corresponds with the half-risen tide and
the maximum positive velocities, andt = 32,400 s which corresponds with the half-ebb tide
and the maximum negative velocities.

2 This selection is not related with the properties of the schemes; it is only to restrict the number of figures. In
both cases the performances of the schemes are similar.
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FIG. 13. Profile (Z(x), h(x, t)+ Z(x)). Extension of the Roe schemet = 10,800,M = 0.1 (——— exact
solution; -◦- approximate solution).

Figure 12 shows that the values of the Froude number are small, as has been assumed in
the previous section.

Observe that the extensions of theQ-schemes give good results when compared to the
asymptotic analytical solution (60)–(61). On the other hand, centred discretizations of the
source termsGk, k = 1, 2, 3, lead to numerical results with too high spatial differences in
water level and flux. One reason for this bad behaviour is that the latter schemes do not
satisfy either the exact or the approximateC-property.

FIG. 14. Flux (q). Extension of the Roe schemet = 10,800,M = 0.1 (——— exact solution; -∗- approximate
solution).
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FIG. 15. Profile (Z(x), h(x, t)+ Z(x)). Extension of the Q-scheme of van Leert = 32,400, M = 0.1
(——— exact solution, -◦- approximate solution).

The main aim of these two last subsections is to test the numerical schemes with relevant
problems presented in the literature.

5.3. The Steady Flow over a Bump in a Rectangular Channel

The purpose of this problem is to calculate the steady flow over a bump in a rectangular
channel with constant breadth. It is a classical test problem and it has been considered, for
example, by theworking group on dam break modelling[9], where it is also detailed how
to compute the analytical solutions.

FIG. 16. Flux (q). Extension of the Q-scheme of van Leert = 32,400,M = 0.1 (——— exact solution; -∗-
approximate solution).
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FIG. 17. Profile(Z(x), h(x, t)+ Z(x)). Roe scheme and centred discretization of the source termst = 10,800,
M = 0.1 (——— exact solution; -◦- approximate solution).

The breadth of the channel is constant,B(x)= 1 m, the length isL = 25 m and the bottom
topography is given by

Z(x) =
{

0.2− 0.05(x − 10)2, if 8 < x < 12,

0, otherwise.
(68)

According to the boundary and initial conditions, the flow may be subcritical, transcritical
with a steady shock, or supercritical.

FIG. 18. Flux (q). Roe scheme and centred discretization fof the source termst = 10,800,M = 0.1 (———
exact solution; -∗- approximate solution).
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FIG. 19. Z(x), h(x, t)+ Z(x) Transcritical flow without shock. Extension of the Q-scheme of van Leer
(——— exact solution; -◦- approximate solution).

• Transcritical flow without shock (Fig. 19):
—Downstream. The water levelh= 0, 66 m is imposed only when the flow is sub-

critical.
—Upstream. The discharge is imposedQ= 1.53 m3/s.
• Transcritical flow with shock (Fig. 20):

—Downstream. The water levelh= 0, 33 m is imposed.
—Upstream. The dischargeQ= 0.18 m3/s is imposed.

FIG. 20. Z(x), h(x, t)+ Z(x) Transcritical flow with shock. Extension of the Q-scheme of van Leer
(——— exact solution; -◦- approximate solution).
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FIG. 21. Z(x), h(x, t)+ Z(x) subcritical flow. Extension of the Q-scheme of van Leer (——— exact solution;
-◦- approximate solution).

• Subcritical flow (Fig. 21):
—Downstream. The water levelh= 2 m is imposed.
—Upstream. The dischargeQ= 4, 42 m3/s is imposed.

In the three cases as initial conditions we take a constant water level equal to de level
imposed downstream and the discharge equal to zero.

To prevent the numerical velocity of the mentionedQ-schemes from vanishing when
some of the eigenvalues of the Jacobian matrix of the flux is zero, we apply the Harten
regularization (see [11]). The considered theε value given by

ε = 0.1
√

gh. (69)

As is well known this regularization is especially important for the transcritical cases near
a sonic point. This regularization is only applied to the numerical flux function, not to the
numerical source functions.

The comparison of the results with the associated analytical solutions illustrates the
improved performance of the discretizations in critical situations. The level of the water is
chosen to show the numerical results because it is more relevant than the discharge; it is
zero for the three cases. We take CFL= 1,1x = 0.25 m,t = 200 s, where the steady state
is reached.

This election of1x is sufficient to compute the solutions in Figs. 19 and 21 properly. In
Fig. 20 the shock can be obtained with more accuracy if the number of nodes is increased.
An analogous situation is presented in Fig. 23, where the number of nodes is 200 and the
shock is properly computed.

5.4. A Converging–Diverging Channel

In order to analyze the behaviour of the schemes in other relevant problems presented
in the literature two test cases considereded by P. Garc´ıa-Navarroet al. in [4] has been
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FIG. 22. Breadth of the channel.

selected: a transcritical case in a steady flow and transient motion in supercritical situations
in a converging–diverging channel with flat bed.

5.4.1. Steady flow.This is an interesting problem to test the efficiency of the discretiza-
tion of the source termG2 involving the breadth of the channel. The width variation modifies
the steady-state profiles and due to the boundary conditions a stationary hydraulic jump ap-
pears to connect subcritical and supercritical flows. As it is said in [4], these example is
related to many practical problems such us flow between bridge piers.

FIG. 23. h(x, t)Extension of the Q-scheme of van Leer (——— exact solution; -∗-·-∗- approximate solution).
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FIG. 24. Froude number.

More precisely, the geometrical domain of the flow is an interval ofL = 500 m with flat
bed(Z(x)= 0 ∀x) and a sinusoidal width variation (see Fig. 22) given by

B(x) =
{

5− 0.7065
(
1+ cos

(
2π
(

x− 250
300

)))
, if |x − 250| ≤ 150,

5, otherwise.
(70)

Subcritical initial conditions are stated at a depthh(x, 0)= 2 m. As boundary condi-
tions the dischargeQ(0, t)= 20 cum/s at the upstream and a 0.1 m high weir condi-
tion at the downstream boundary are imposed. The numerical results show up the

FIG. 25. h(x, 5) Extension of the Q-scheme of van Leer.
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FIG. 26. h(x, 15) extension of the Q-scheme of van Leer.

performances of the new extensions and the exact solution (see [4]) is plotted for com-
parison. As Fig. 23 shows, the water accelerates as it approaches the point of maximum
contraction(B(250)= 3.587 m), the flow becomes critical there and it changes then to su-
percritical flow that gives rise to a stationary hydraulic jump to connect with the subcritical
profile required by the downstream condition (see Fig. 24 for the Froude number).

The CFL number considered is 0.9,1= 2.5 m, and M= 0. The comparison between
the exact solution and also the McCormack TVD scheme (second-order accuracy) used by
Garcı́a-Navarroet al. in [4] confirms the improved properties of the proposed schemes.

FIG. 27. h(x, 150) extension of the Q-scheme of van Leer.
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FIG. 28. h(x, 600) extension of the Q-scheme of van Leer.

5.4.2. Surge propagation through converging–diverging channel.This test problem
allows us to show the performances of the extensions in a transitory motion and for Froude
number greater than the considered in the tidal wave propagation problem.

In this case the exact solution does not exist; then the numerical results are analyzed
from a qualitative point of view and can be compared with those presented in [4] with the
McCormack TVD scheme.

The time evolution of a surge in the same channel of the previous test is considered. A
bore 9.79 m deep of 1000 cum/s propagates downstream over still water 1-m deep. A 2-m
weir is supposed to be placed downstream. Also in this case CFL= 0.9,M= 0, and 200 is
the number of nodes.

FIG. 29. Froude numbert = 600.
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The situation att = 5 s is plotted in Fig. 25. At this time the weir condition closed
the channel and the supercritical front advances through the contracting channel. At time
t = 15 s (see Fig. 26) the front has surpassed the point of maximum contraction. And time
at t = 150 s (see Fig. 27) the downstream end is reached by a front similar to the initial
one so that is partially reflected and partially transmitted over the weir. The reflected surge
starts travelling upstream and it propagates until it becomes a stationary hydraulic jump
in the contracting region. This final steady state is shown in Fig. 28 (t = 600 s) and the
corresponding Froude number is in Fig. 29.

6. CONCLUSIONS

In this this paper the shallow water equations in channels with irregular geometry
are solved with extensions of theQ-schemes of van Leer and Roe. The main contribu-
tion of this work is an improved discretization of the source terms. The efficiency of
the proposed schemes is proved. This analysis is done in terms of a conservation prop-
erty which is related with a stationary solution also introduced in this paper. This so-
lution allows to test the numerical schemes in subcritical and supercritical cases with
variable geometry and taking into account the friction effect. To complete this study an
asymptotic unsteady solution for small Froude number is also obtained and the different
schemes are compared with this solution. The comparison of the studied schemes with
high-order methods like McCormack TVD scheme [4] in relevant test problems with hy-
draulic jumps and transient motions for large Froude numbers is also satisfactory. Numer-
ical results and theoretical developments now in progress with Garc´ıa-Navarro [5] con-
firm the importance of upwinding the source terms also in channels of arbitrary cross
section.
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2. A. Bermúdez, A. Dervieux, J. A. Desideri, and M. E. V´azquez, Upwind schemes for the two-dimensional
shallow water equations with variable depth using unstructured meshes,Comput. Methods Appl. Mech. Eng.
155, 49 (1998).
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